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This paper deals with a numerical scheme to approximate the mth moment of the solution
of the one-dimensional random linear transport equation. The initial condition is assumed
to be a random function and the transport velocity is a random variable. The scheme is
based on local Riemann problem solutions and Godunov’s method. We show that the
scheme is stable and consistent with an advective–diffusive equation. Numerical examples
are added to illustrate our approach.
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1. Introduction

Partial differential equations have been important models during the last centuries, mainly because they have the funda-
mental support of differential calculus, numerical methods, and computers. However, the formulation of a physical process
as a partial differential equation demands experiments to measure the data, for example, the diffusion coefficient, perme-
ability of a porous media, initial conditions, boundary conditions and so on. This means that the interpretation of the data
as random variables is more realistic in some practical situations. Differential equations with random parameters are called
Random Differential Equations; new mathematical methods have been developed to deal with this kind of problems (see
[6,9,13,16], for example).

We are interested in the solution of the random linear transport equation
Q tðx; tÞ þ AQ xðx; tÞ ¼ 0; t > 0; x 2 R;

Qðx;0Þ ¼ Q0ðxÞ;

�
ð1Þ
where A is a random variable and Q0ðxÞ is a random function.
According to [1], the solution for the random Riemann problem (1) with
Q 0ðxÞ ¼
QL if x < 0;
QR if x > 0;

�
ð2Þ
where QL and QR are random variables, is given by
Qðx; tÞ ¼ Q L þ X
x
t

� �
ðQ R � Q LÞ: ð3Þ
. All rights reserved.
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In (3) X is the Bernoulli random variable with PfXðnÞ ¼ 1g ¼ FAðnÞ where FA is the cumulative probability function of A. Fur-
thermore, in case of independence between A and both QL and Q R, the mth moment of Qðx; tÞ, hQ mðx; tÞi, m 2 N, m P 1, is
given by
hQ mðx; tÞi ¼ hQ m
L i þ FA

x
t

� �
Q m

R

� �
� Qm

L

� �� �
: ð4Þ
The closed solution (3) and Godunov’s ideas [7,10,11] are used in [2] and [4] to design numerical methods to compute the
mean and the variance of the solution to (1). These methods are explicit and neither demand generation of random numbers
(as does the Monte Carlo method [5,12,15,17]), nor require differential equations governing the statistical moments (as in
the effective equations methodology [6,17]). Moreover, the schemes are stable and consistent with an advective–diffusive
equation which agrees with the effective equation to the expectation presented in the literature (see [6], for example). In
[3] we use the idea of collecting deterministic realizations through their probability functions to solve the nonlinear random
Riemann–Burgers equation.

In this paper, we deal with the general moments of the solution to (1). The outline of this paper is as follows. In Section 2
we use (3) and (4) to design a numerical method to the mth statistical moment of the solution to the general problem (1). We
present the CFL condition under which the local solutions do not interact between themselves. In Section 3 we show the
stability of the numerical scheme and its consistency with an advective–diffusive equation. We show that the diffusion coef-
ficient is related with the probability density function of the velocity by Eq. (18), which has a simple solution in the normal
velocity case. Furthermore, in Section 4 we present a decoupled system of partial differential equations to be satisfied by the
central moments of the random solution. All the partial differential equations in this paper are linear. In fact, denoting by
LðuÞ ¼ ut þ hAiux � muxx, the equations are: LðuÞ ¼ 0, for the moments, and LðuÞ ¼ f , for the central moments. Computational
experiments and comparisons with the Monte Carlo method are presented in Section 5.

2. The numerical scheme

In this section, we present the numerical method for the mth statistical moment of the solution to (1). The method is
based on the juxtaposition of Riemann problems whose solutions are given by (3). We discretize both space and time assum-
ing a uniform mesh spacing: xj ¼ jDx, xj�1=2 ¼ xj � ðDx=2Þ, tn ¼ nDt, tn�1=2 ¼ tn � ðDt=2Þ, for Dx;Dt > 0. In Fig. 1 we present a
schematic diagram of the algorithm. Let us assume that the random variables Qn

j and the mth moments Qm;n
j

D E
¼ Qmðxj; tnÞ
� �

are known at t ¼ tn.
In the following we use the ideas of Reconstruct-Evolve-Average (REA), algorithm [7,11] to approximate

Qm;nþ1
j

D E
¼ Qmðxj; tnþ1Þ
� �

.

Step 1 We reconstruct the piecewise random constant function eQ ðx; tnÞ from Q n
j , i.e, eQ ðx; tnÞ ¼ Qn

j for x 2 ½xj�1=2; xjþ1=2�. The
piecewise constant random function eQ ðx; tnÞ defines a set of local random Riemann problems, each one centered at
x ¼ xj�1=2,
Q tðx; tÞ þ AQ xðx; tÞ ¼ 0; t > tn; x 2 R;

Qðx; tnÞ ¼
Q n

j�1; if x < xj�1=2;

Q n
j ; if x > xj�1=2:

(
ð5Þ
Fig. 1. Schematic diagram of the algorithm.
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Step 2 From (3) and (4), the local solutions of (5) and the respective statistical moments are given by
Gj�1=2ðx; tnþ1=2Þ ¼ Q n
j�1 þ X

x� xj�1=2

Dt=2

	 

Q n

j � Q n
j�1

h i
ð6Þ
and
Gm
j�1=2ðx; tnþ1=2Þ

D E
¼ Qm;n

j�1

D E
þ FA

x� xj�1=2

Dt=2

	 

Qm;n

j

D E
� Qm;n

j�1

D Eh i
: ð7Þ
The global solution at t ¼ tnþ1=2, eQ ðx; tnþ1=2Þ, can be constructed by piecing together the local random Riemann solutions (6),
provided that Dt=2 is sufficiently small such that adjacent local random Riemann solutions do not interact. Therefore, taking
into account the similarity property of the random Riemann solutions, Dx and Dt must be chosen such that
Gj�1=2ðx; tnþ1=2Þjx¼xj�1
� Q n

j�1 and Gj�1=2ðx; tnþ1=2Þjx¼xj
� Q n

j ;
where the symbol ‘‘�” means ‘‘sufficiently near to”. By substituting these conditions in (6) we must have
FA �
Dx
Dt

	 

� 0 and FA

Dx
Dt

	 

� 1: ð8Þ
Remark 1. We may regard (8) as the CFL condition for the method: the interval ½�Dx=Dt;Dx=Dt� must contain an effective
support of the density probability function of A. This means that the probability of A outside of the interval ½�Dx=Dt;Dx=Dt� is
sufficiently near to zero, and then may be disregarded. The existence of an effective support is ensured by Chebyshev’s
inequality: PfjA� hAijP krAg 6 1=k2, for all k > 0, where rA is the standard variation of A. If we take 1=k2 sufficiently close
to zero, to escape from the interaction between solutions of Riemann problems we must take ðjhAij þ krAÞDt=Dx 6 1.

Under condition (8) we conclude Step 2 by taking
eQ ðx; tnþ1=2Þ ¼
X

j�1=2

Gj�1=2ðx; tnþ1=2Þ 1½xj�1 ;xj �
where 1½a;b� denotes the characteristic function of the interval ½a; b�. From (7) it follows that
eQ mðx; tnþ1=2Þ
D E

¼
X

j�1=2

Gm
j�1=2ðx; tnþ1=2Þ

D E
1½xj�1 ;xj �: ð9Þ
In a similar way, using the values at t ¼ tnþ1=2, we obtain
bQ mðx; tnþ1Þ
D E

¼
X

j

Gm
j ðx; tnþ1Þ

D E
1½xj�1=2 ;xjþ1=2 �: ð10Þ
Step 3 We use (10) to approximate Q m;nþ1
j

D E
as the average value of bQ mðx; tnþ1Þ

D E
over the interval ½xj�1=2; xjþ1=2�:Z Z
Qm;nþ1
j

D E
’ 1

Dx

xjþ1=2

xj�1=2

bQ mðx; tnþ1Þ
D E

dx ¼ 1
Dx

xjþ1=2

xj�1=2

Gm
j ðx; tnþ1Þ

D E
dx

¼ 1
Dx

Z xjþ1=2

xj�1=2

Q m;nþ1=2
j�1=2

D E
þ FA

x� xj

Dt=2

	 

Q m;nþ1=2

jþ1=2

D E
� Q m;nþ1=2

j�1=2

D Eh i� �
dx

¼ Q m;nþ1=2
j�1=2

D E
þ Dt

2Dx

Z Dx
Dt

�Dx
Dt

FAðxÞdx

( )
Qm;nþ1=2

jþ1=2

D E
� Q m;nþ1=2

j�1=2

D Eh i
: ð11ÞD E
Likewise, we use (9) to approximate Q m;nþ1=2
j�1=2 :Z Z
Qm;nþ1=2
j�1=2

D E
’ 1

Dx

xj

xj�1

eQ mðx; tnþ1=2Þ
D E

dx ¼ 1
Dx

xj

xj�1

Gm
j�1=2ðx; tnþ1=2Þ

D E
dx

¼ 1
Dx

Z xj

xj�1

Q m;n
j�1

D E
þ FA

x� xj�1=2

Dt=2

	 

Q m;n

j

D E
� Q m;n

j�1

D Eh i� �
dx

¼ Q m;n
j�1

D E
þ Dt

2Dx

Z Dx
Dt

�Dx
Dt

FAðxÞdx

( )
Q m;n

j

D E
� Q m;n

j�1

D Eh i
: ð12Þ
The following result is proved in [4]:
Lemma 2. Let Y be a random variable and ½�n; n� an effective support of the density probability function of Y, i.e., FY ð�nÞ � 0 and
FYðnÞ � 1. Then
Z n

�n
FYðxÞdx � n� hYi: ð13Þ
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Inserting (13) in (11) and (12), and denoting k ¼ DthAi=Dx, gives
Q m;nþ1
j

D E
¼ 1

2
Q m;nþ1=2

j�1=2

D E
þ Q m;nþ1=2

jþ1=2

D Eh i
� k

2
Q m;nþ1=2

jþ1=2

D E
� Q m;nþ1=2

j�1=2

D Eh i
ð14Þ
and
Q m;nþ1=2
j�1=2

D E
¼ 1

2
Q m;n

j�1

D E
þ Q m;n

j

D Eh i
� k

2
Q m;n

j

D E
� Q m;n

j�1

D Eh i
: ð15Þ
Grouping these expressions we summarize the two-step scheme (14) and (15) in the one-step explicit method:
Q m;nþ1
j

D E
¼ Q m;n

j

D E
� k

2
Q m;n

jþ1

D E
� Q m;n

j�1

D Eh i
þ 1

4
ð1þ k2Þ Q m;n

jþ1

D E
� 2 Q m;n

j

D E
þ Q m;n

j�1

D Eh i
: ð16Þ
Remark 3. The numerical scheme (16) is conservative, i.e., it can be rewritten as
Q m;nþ1
j

D E
¼ Q m;n

j

D E
� Dt

Dx
Fm;n

jþ1=2 � Fm;n
j�1=2

h i
;

where Fm;n
j�1=2 ¼ ð1=2ÞhAi Q m;n

j�1

D E
þ Qm;n

j

D Eh i
� ð1=4ÞhAið1=kþ kÞ Qm;n

j

D E
� Q m;n

j�1

D Eh i
is an approximation to the average flux at

x ¼ xj�1=2.
3. Numerical analysis of the scheme

The scheme (16) is a generalization of a previously studied scheme to the mean (m ¼ 1) of the solution to (1). Therefore,
we can use the same arguments used in [4] to show

� Consistency: if m ¼ Dx2=ð4DtÞ is fixed then the numerical scheme (16) yields an OðDx2Þ approximation for the solution of
the partial differential equation
ut þ hAiux ¼ m uxx;

uðx;0Þ ¼ hQ 0ðxÞmi;
ð17Þ
� Stability: the numerical method (16) is stable under the CFL condition (8).

As a linear problem, the convergence of (16) to the differential equation (17) is a consequence of the Lax Equivalence The-
orem, no matter what m ¼ Dx2=ð4DtÞ is. The following proposition gives additional information about the diffusion associated
with the random velocity, A.

Proposition 4. The diffusion coefficient in (17) must satisfy
�f 0A
x
t

� �
mðx; tÞ ¼ fA

x
t

� �
ðx� hAitÞ; ð18Þ
where fAðnÞ ¼ d½FAðnÞ�=dn is the density probability function of A.

Proof. As a general differential equation, (17) must be satisfied by every particular solution. The random Riemann problem
(1)–(2) is a particular case of (1) with known moments given by (4):
hQ mðx; tÞi ¼ Q m
L

� �
þ FA

x
t

� �
Qm

R

� �
� Q m

L

� �� �
:

Direct derivations and substitution of this solution in (17) gives (18), a necessary condition to mðx; tÞ. h
3.1. The normal case

Let A � NðhAi;rAÞ. Using the normal probability density function in (18) we obtain m ¼ r2
At. In this case, the differential

equation (17) turns to be
ut þ hAiux ¼ ðr2
AtÞuxx; t > 0;

uðx;0Þ ¼ hQ 0ðxÞmi;
ð19Þ
which agrees with the effective equation for the statistical mean presented by some authors (see [6], for example). We
emphasize that our convergence results show that the differential equation which describes the evolution of all the moments
is the same. Using (18) we may also show that if mðx; tÞ depends only on t then A is normally distributed.
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Now we use the consistency condition to define proper mesh spacing. Let t ¼ tf be fixed, and select Dt and Dx such that
Dx2

4Dt
¼ m ¼ 1

2
ðr2

Atf Þ: ð20Þ
The convergence results show that our method converges to the solution of the differential equation
ut þ hAiux ¼
1
2
ðr2

Atf Þuxx;

uðx;0Þ ¼ hQ 0ðxÞmi:
ð21Þ
The solutions of (19) and (21), u1ðx; tÞ and u2ðx; tÞ, respectively, are equal at t ¼ tf . Indeed, according to [14] we have
u1ðx; tf Þ ¼
1ffiffiffiffi

p
p

n1ðtf Þ

Z þ1

�1
exp � x� hAitf �x

n1ðtf Þ

	 
2
" #

hQ 0ðxÞmi dx; ð22Þ
where
n1ðtf Þ ¼ 2
Z tf

0
ðr2

AsÞ ds

 �1=2

¼
ffiffiffi
2
p

rAtf :
On the other hand, the solution to (21) is also given by (22) with
n2ðtf Þ ¼ 2
Z tf

0
½ðr2

Atf Þ=2� ds

 �1=2
instead of n1ðtf Þ. Since n1ðtf Þ ¼ n2ðtf Þ then u1ðx; tf Þ ¼ u2ðx; tf Þ.
Therefore (20) is more than a consistency condition: it guarantees the convergence of the method to the solution at t ¼ tf .
For this particular example (normal velocity), we have shown that each moment of the solution to (1), hQðx; tÞmi, satisfies

the advection–diffusion Eq. (17) with m ¼ mðtÞ. As a consequence, the probability density function for the random solution
Qðx; tÞ, fQ ðq; x; tÞ, also satisfies the advection–diffusion equation
ðfQ Þt þ hAiðfQ Þx ¼ mðtÞ ðfQ Þxx;

fQ ðq; x;0Þ ¼ fQ0ðq; xÞ:
ð23Þ
Indeed, the Fourier transform of fQ ðq; x; tÞ, under the assumption that the probability density function is uniquely determined
by its moments (see e.g., [8] for conditions for uniqueness in the problems of moments), is
bfQ ðx; x; tÞ ¼
X1
j¼0

ðixÞj

j!
hQ mðx; tÞi; ð24Þ
where hQ mðx; tÞit þ hAi Qmðx; tÞ
� �

x ¼ mðtÞ Qmðx; tÞ
� �

xx. Taking the derivative with respect to t and x in (24), we arrive at
bfQ

� �
t
þ hAi bfQ

� �
x
¼ mðtÞ bfQ

� �
xx
: ð25Þ
Since the variable x does not appear in the derivatives, we can go back to the variable u and find (23). The respective initial
condition follows from the probability density function of Q0ðxÞ.

4. The system of partial differential equations for the central moments

The central moments of a given random function Qðx; tÞ are deterministic functions defined by lm ¼ hðQ � hQiÞ
mi, m 2 N,

m P 2. The most used central moment is the variance, m ¼ 2, which was introduced by Gauss (1777–1855) as a measure of
dispersion of the distribution of Qðx; tÞ. But high order central moments are also useful information concerning random vari-
ables [13,16]. In the following we show that the central moment lmðx; tÞ, if sufficiently smooth, satisfies an advective–dif-
fusive equation with the source term defined by the expectation and the central moments lm�1ðx; tÞ and lm�2ðx; tÞ. Here, we
extend the definition of central moments for m P 0 since l0 ¼ 1 and l1 ¼ 0.

We may use algebraic manipulations to show that

(i) If k 6 m� 2 then
m

kþ 2

	 

ðkþ 1Þðkþ 2Þ ¼

m

k

	 

ðm� kÞðm� k� 1Þ: ð26Þ
(ii) If k 6 m� 1 then
m

kþ 2

	 

ðkþ 1Þ ¼

m

k

	 

ðm� kÞ: ð27Þ
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(iii)
lm ¼ hQ
mi �

Xm�1

k¼2

m

k

	 

lkhQi

m�k � hQim: ð28Þ
Proposition 5. Let Z(x,t) be a random function whose statistical moments satisfy (17), i.e., the advective–diffusive equations:
hZmit þ hAihZ
mix ¼ mhZmixx; ð29Þ
m 2 N, m P 1. Then the central moments, lmðx; tÞ ¼ h½Z � hZi�
mi, m 2 N, m P 2, satisfy the advective–diffusive equations with

source term:
lm;t þ hAilm;x � mlm;xx ¼ 2mmlm�1;x hZix þmðm� 1Þmlm�2hZi
2
x ; ð30Þ
where l0 ¼ 1 and l1 ¼ 0.

Proof. The proof is based on the induction principle. Since l2ðx; tÞ ¼ hZ
2ðx; tÞi � hZðx; tÞi2, l1ðx; tÞ ¼ 0 and l0ðx; tÞ ¼ 1, direct

substitution and derivations show (30) for k ¼ 2. As the induction hypothesis we assume that (30) is true for k ¼ 3 : ðm� 1Þ,
and our task is to prove that (30) is true for k ¼ m. From (28) we have
lmðx; tÞ ¼ hZ
mi �

Xm�1

k¼2

m

k

	 

lkhZi

m�k � hZim:
By differentiating this expression with respect to t and x, grouping conveniently the terms, and using (29) we arrive at
lm;t þ hAilm;x � mlm;xx ¼ �
Xm�1

k¼2

m
k

	 

hZim�k lk;t þ hAilk;x � mlk;xx

n o
þ 2 m

Xm�1

k¼2

m
k

	 

ðm� kÞ lk;x hZi

m�k�1 hZix

þ m
Xm�2

k¼2

m
k

	 

ðm� kÞ ðm� k� 1Þ lk hZi

m�k�2 ðhZixÞ
2 þ m m ðm� 1Þ hZim�2hZi2x : ð31Þ
Using the induction hypothesis in the first sum in (31), and separating the last term of the second and third sums, we obtain
lm;t þ hAilm;x � mlm;xx ¼ �
Xm�1

k¼2

m

k

	 

hZim�k 2kmlk�1;xhZix þ kðk� 1Þmlk�2ðhZixÞ

2
n o

þ 2 m
Xm�2

k¼2

m

k

	 

ðm� kÞ lk;x hZi

m�k�1 hZix þ m
Xm�3

k¼2

m

k

	 

ðm� kÞ ðm� k� 1Þ lk hZi

m�k�2 hZi2x

þ 2 m m lm�1;x hZix þm ðm� 1Þ m lm�2 hZi
2
x þ m m ðm� 1Þ hZim�2hZi2x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

equal the first sum with k¼2

;

or, equivalently,
lm;t þ hAilm;x � mlm;xx ¼ 2mmlm�1;xhZix þmðm� 1Þmlm�2hZi
2
x � m

Xm�1

k¼3

m

k

	 

hZim�k 2klk�1;xhZix þ kðk� 1Þlk�2hZi

2
x

n o
þ m

Xm�2

k¼2

m

k

	 

ðm� kÞ 2 lk;x hZi

m�k�1 hZix þ m
Xm�3

k¼2

m

k

	 

ðm� kÞ ðm� k� 1Þ lk hZi

m�k�2 hZi2x :

ð32Þ
To show that the three sums on the right side of (32) are zero, we open the first one of them
Xm�1

k¼3

m

k

	 

hZim�k 2 k lk�1;xhZix þ kðk� 1Þlk�2hZi

2
x

n o
¼|{z}

l1¼0

¼
Xm�1

k¼3

m

k

	 

hZim�k 2klk�1;xhZix þ

Xm�1

k¼4

m

k

	 

hZim�k kðk� 1Þlk�2hZi

2
x

¼ 2
Xm�2

k¼2

m

kþ 1

	 

ðkþ 1ÞhZim�k�1lk;xhZix þ

Xm�3

k¼2

m

kþ 2

	 

ðkþ 1Þðkþ 2ÞhZim�k�2lkhZi

2
x ¼|{z}using ð26Þ and ð27Þ

¼ 2
Xm�2

k¼2

m

k

	 

ðm� kÞlk;xhZi

m�k�1hZix þ
Xm�3

k¼2

m

k

	 

ðm� kÞðm� k� 1ÞlkhZi

m�k�2hZi2x :
Therefore, from (32) we arrive at (30). h
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Remark 6. In Section 3 we have shown that the numerical method (16), for the moments, is stable and consistent with (17).
Since we have used the same method (16) to compute the central moments, we conclude that the method for the central
moments is stable and consistent with (30).
5. Computational tests

In this section, we present some examples to assess our approach. In Examples 1 and 2 the initial condition allows exact
statistical moments of the solution. We use Riemann initial conditions defined by bivariate normal distributions; in this case
the solutions for the moments are given by (4). In order to investigate the influence of the randomness we use two models: in
Example 1 the velocity, A, is normally distributed, and in Example 2 the velocity is lognormally distributed. In both cases we
compare the exact solutions, given by (4), with the solutions yielded by the numerical scheme (16) for some statistical mo-
ments. In Example 3 we apply our method in the problem (1) where the initial condition is a normal random function and
the transport velocity is a normal random variable. The numerical experiments presented in this section were done in double
precision with some MATLAB codes on a 3.0 GHz Pentium 4 with 512 Mb of memory.

Example 1. Let us consider the random Riemann problem (1)–(2) where the random velocity is normally distributed,
A � Nð1:0;0:8Þ, and the random variables QL and QR have a bivariate normal distribution defined by: hQLi ¼ 1:0 (mean of
QL); hQRi ¼ 0:0 (mean of QR); rL ¼ 0:4 (standard deviation of QL); rR ¼ 0:5 (standard deviation of QR); and q ¼ 0:4
(correlation coefficient between QL and QR). In Fig. 2 we compare the exact values for the mean, variance, 3rd central
moment, and 4th central moment with the computations using (16) at tf ¼ 0:4, and Dt and Dx satisfying (20).

Example 2. To check the influence of the velocity distribution we consider the random Riemann problem (1)–(2) in which
the random velocity is lognormally distributed, A ¼ expðnÞ, n � Nð0:5;0:35Þ. The initial condition (QL;QR) has a bivariate nor-
mal distribution defined by: hQ Li ¼ 1:0; hQRi ¼ 0:15; rL ¼ 0:36; rR ¼ 0:25; and q ¼ 0:4. Taking the lognormal distribution,
A ¼ expðnÞ, n � Nðln;rnÞ, in (18) we obtain
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Fig. 2. A � Nð1:0;0:8Þ, Dx ¼ 0:01, Dt ¼ 0:000195, and tf ¼ 0:4.
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mðx; tÞ ¼
r2

n
x
t

� �
x
t � hAit
� �

r2
n � ln

� �
þ ln x

t

� � : ð33Þ
This mean that it is not possible to find constants Dx and Dt such that ðDx2Þ=ð4DtÞ ¼ m, the consistency condition. Moreover,
the diffusion coefficient (33) may assume negative values loosing the physical meaning. Thus, although these arguments are
not conclusive, they suggest that an advective–diffusive equation is not a good model to the moments of the solution to (1)
with a lognormal velocity. If we use (20) as in the previous example the results loose quality as shown in Fig. 3.

Example 3. In this example we test our method for the random partial differential equation (1) in which A is normal,
A � Nð�0:5;0:6Þ, and Q0ðxÞ is a normal random function with mean
hQ 0ðxÞi ¼
1; x 2 ð1:4; 2:2Þ;
e�20ðx�0:25Þ2 ; otherwise;

(
ð34Þ
and covariance Covðx; ~xÞ ¼ r2 expð�bjx� ~xjÞ, where Var½Q0ðxÞ� ¼ r2 is constant and b > 0 governs the decay rate of the spa-
tial correlation. We use b ¼ 0:3 and r2 ¼ 0:16. The numerical results are compared with the Monte Carlo method using suites
of realizations of A and Q 0ðxÞ, where A and Q 0ðxÞ are statistically independents. Observe that each realization AðxÞ and
Q0ðx;xÞ yields analytical solution given by Qðx; t;xÞ ¼ Q0ðx� AðxÞt;xÞ. To generate the realizations required by Monte
Carlo simulations we use random numbers generator of MATLAB. Comparisons with the Monte Carlo method, with
30,000 realizations, are plotted in Fig. 4.
6. Conclusions

In this paper, we have used the Godunov ideas to obtain a numerical scheme for the statistical moments of the solution of
the one-dimensional random linear transport equation. We consider the velocity as a random variable and the initial con-
dition as a random function. We have used an explicit solution of the random Riemann problem to evolve in the REA algo-
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Fig. 3. A ¼ expðnÞ, n � Nð0:5;0:35Þ, Dx ¼ 0:01, Dt ¼ 0:000312, and tf ¼ 0:4.
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rithm. Moreover, we have shown that the scheme is stable and consistent with an advective–diffusive equation. A particular
Riemann problem solution is used to find the diffusion coefficient of the differential equations for the statistical moments.
Also, we have obtained the differential equations for the central moments of the solution. Computational tests have illus-
trated our theoretical results.
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